skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ndiaye, Cheikh_Birahim"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We study the fractional Yamabe problem first considered by Gonzalez-Qing [36] on the conformal infinity $$(M^{n}, \;[h])$$ of a PoincarĂ©-Einstein manifold $$(X^{n+1}, \;g^{+})$$ with either $n=2$ or $$n\geq 3$$ and $$(M^{n}, \;[h])$$ locally flat, namely $(M, h),$ is locally conformally flat. However, as for the classical Yamabe problem, because of the involved quantization phenomena, the variational analysis of the fractional one exhibits a local situation and also a global one. The latter global situation includes the case of conformal infinities of PoincarĂ©-Einstein manifolds of dimension either $n=2$ or of dimension $$n\geq 3$$ and which are locally flat, and hence the minimizing technique of Aubin [4] and Schoen [48] in that case clearly requires an analogue of the positive mass theorem of Schoen-Yau [49], which is not known to hold. Using the algebraic topological argument of Bahri-Coron [8], we bypass the latter positive mass issue and show that any conformal infinity of a PoincarĂ©-Einstein manifold of dimension either $n=2$ or of dimension $$n\geq 3$$ and which is locally flat admits a Riemannian metric of constant fractional scalar curvature. 
    more » « less